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Abstract

The results of high precision variational calculations are reported for a num-

ber of bound states in various Coulomb three-body systems, including helium

and helium-muonic atoms, some adiabatic systems (H+
2 ,D+

2 and DT+ ions)

and muonic molecular ions ppµ, ddµ, ttµ and dtµ. The hyperfine splittings

for the double electron-excited states in the helium-muonic 3He2+µ−e− and

4He2+µ−e− atoms have also been determined. The results of our present

study are significantly more accurate than results known from earlier calcu-

lations for all considered systems and states. Our present approach can be

used to determine the bound state spectra in various three-body systems to

arbitrary high accuracy. We also discuss a number of complications which

are usually detected in high precision bound state calculations of few-body

systems.

PACS: 31.25.Eb, 31.25.Nj and 36.10.Dr
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In this communication we report the results of high precision, bound states calculations

for a number of Coulomb three-body systems. Presently, our main goal was to perform highly

accurate computations of various three-body systems with different particle masses, charges

and permutation symmetries. Note that recently a significant progress has been achieved

in theoretical and computational studies of the bound state spectra in various three-body

systems [1]. In particular, now by using our approach developed in [1] one can determine

the bound state energies and corresponding wave functions for an arbitrary three-body

system to a very high accuracy. In this study we want to improve previously computed

energies and wave functions to the limits which are significantly exceed any present and

future experimental needs. In other words, the maximal computational uncertainties for all

computed energies and other bound state properties must be negligibly small.

Presently, for high precision computations we also apply the variational approach

developed in [1]. This approach was found to be very effective and sufficiently flexible in

applications to various three-body systems [1]. To illustrate the efficiency of this approach

[1] below we consider a large number of Coulomb three-body systems (and different states

in such systems). This includes a few systems which are traditionally known as complicated

cases for highly accurate variational methods based on the use of the relative coordinates

r32, r31 and r21 (see below). In particular, highly accurate variational results are presented for

the adiabatic ions H+
2 , D

+
2 and DT+. The heavy, non-symmetric adiabatic ion DT+ is one of

the most complicated systems for our present approach [1]. We are also consider the weakly-

bound (1,1)-states in the ddµ and dtµ muonic molecular ions. Highly accurate determination

of these weakly-bound states was a long-standing (since 1959, see [2]) unsolved and very

complicated problem for various computational methods. The helium-muonic 3He2+µ−e−

and 4He2+µ−e− atoms in their electron-excited states can also be considered as examples of

quite complicated Coulomb three-body systems with the two-shell, cluster structure.

In addition to such complicated (and extremely complicated) systems and states we

also discuss some Coulomb three-body systems which are ‘traditionally convenient’ for highly

accurate variational expansions written in the relative coordinates r32, r31 and r21. These are
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the helium atom ∞He (23S(L = 0)−state) and ppµ muonic molecular ion (S(L = 0)−state).

Highly accurate results for analogous ‘convenient’ systems such as Ps−,∞H− ions and ∞He

atom (11S(L = 0)−state) will be presented elsewhere.

It should be mentioned that our present approach [1] is based on a few fundamental

ideas. First, we apply the so-called fast convergent and universal variational expansions

written in the relative coordinates r32, r31 and r21. Here and below rij =| ~ri − ~rj |= rji

and i 6= j = (1, 2, 3) and ~r1, ~r2 and ~r3 are the position vectors of the first, second and

third particle, respectively. Note that all these position vectors are determined to the same

center, i.e. the relative coordinates are translationally and rotationally invariant. In fact,

all our present trial wave functions are written in the perimetric coordinates u1, u2, u3 (see

below) which are closely related with the relative coordinates, but always positive and truly

independent. The use of perimetric coordinates simplifies significantly the optimization

of non-linear parameters in the trial wave functions. Finally, the overall efficiency of our

approach increases drastically.

The fast convergent variational expansion means that: (1) the use of a very few basis

functions allows one to obtain a quite accurate energy for an arbitrary Coulomb three-body

(symmetric) system [3], and (2) the variational energies E(N) computed with the use of

N basis functions rapidly (exponentially) converge when the number of basis functions N

grows. Note also that by the universal variational expansion we mean the expansion which

can successfully be applied to various three-body systems, including the one-center systems

(e.g., the H− ion or He atom), systems with three comparable masses (e.g., the Ps− and

ppµ ions), the semi-adiabatic systems (e.g., the dtµ and ttµ ions) and adiabatic systems

(e.g., the DT+ and T+
2 ions). It should be mentioned that our present approach does not

use any of the Born-Oppenheimer (or adiabatic) approximations [4] for the adiabatic and

similar systems.

Second, the flexibility and efficiency of our variational approach [1] is based on the op-

timization of non-linear parameters in the trial (variational) wave functions. Presently, the

multi-box strategy [1] is applied for optimization of such non-linear parameters. In fact, we
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are using the three-box version of our procedure [1] which includes 28 non-linear parameters

(18 principal parameters and 10 scaling parameters). For the adiabatic systems the analo-

gous procedure contains 40 non-linear parameters [5]. Note, however, that our approach [1]

was developed in such a way that the total number of actual non-linear parameters can be

different for different systems, states, permutation symmetries and number of basis functions

N . In general, the total number of such parameters can now be varied between 2 and 6N ,

where N is the total number of basis functions used.

Third, our present calculations are performed using high-precision arithmetic – arith-

metic accurate to the equivalent of 72 to 116 decimal digits. These calculations were per-

formed using MPFUN, a multiple-precision, Fortran-90 computation package developed by

one of the authors (DHB) [6]. This software includes a multiple-precision computation li-

brary, plus translation modules that permit one to utilize the library from standard Fortran-

90 code, with only minor changes to the user’s source code. In particular, one identifies

multiple precision variables and constants with special datatypes, and then during program

execution the appropriate library routines are automatically called. We believe this to be

the first instance of the usage of high-precision numerical software in Coulomb three- and

many-body systems. Previous applications of the MPFUN software have mostly been in the

realm of “experimental mathematics.” These include the discovery of several new math-

ematical identities (including a new formula for π that permits one to calculate arbitrary

individual binary or hexadecimal digits), and the identification of certain constants that

arise in quantum field theory [7].

As mentioned above in this study we consider the bound state spectra in various

Coulomb three-body systems, including atoms, quasi-atoms, ions and muonic molecular ions.

The high precision numerical results of such a study are discussed below. In general, the

Coulomb three-body system contains three point particles with charges q1, q2, q3 and masses

m1, m2, m3. Below, we shall use only atomic units in which h̄ = 1, e = 1, me = 1, where me

is the mass of an electron and e is the charge on a proton. These units, however, are not very

convenient for the muonic molecular ions ppµ, ddµ, ttµ and dtµ considered below. For these
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systems, the so-called muon-atomic (or quasi-atomic) units (h̄ = 1, e = 1, mmin = mµ = 1,

where mmin = min(m1, m2, m3)) are more appropriate. As is well known in these units the

non-relativistic Hamiltonian for an arbitrary Coulomb three-body system can be written in

the following form

H = − 1

2m1

∇2
1 −

1

2m2

∇2
2 −

1

2m3

∇2
3 +

q3q2
r32

+
q3q1
r31

+
q2q1
r21

. (1)

where all charges and masses must be expressed in terms of e and mmin, respectively. In

the general case, the operator H has the discrete and continuous spectra. Our present main

goal is to determine (with maximal possible accuracy) the energies and wave functions of

the considered bound states. Such energies and wave functions are determined by solving

the corresponding Schrödinger equation (H − E)Ψ = 0, where H is the Hamiltonian from

Eq.(1) and E < 0.

In order to determine the bound state energies and corresponding wave functions

we apply an improved version [1] of the exponential variational expansion in perimetric

coordinates u1, u2 and u3. The perimetric coordinates are simply related to the three relative

coordinates: ui = 1
2
(rik+rij−rjk), and therefore, rij = ui+uj, where (i, j, k) = (1, 2, 3). The

perimetric coordinates are truly independent, and each of them varies from 0 to +∞. In the

general case, the trial wave function for the (L,M)−bound state in an arbitrary three-body

system is represented in the form [1]:

ΨLM =
1

2
(1 + κP̂21)

N∑

i=1

L∑

`1=ε

CiY`1,`2
LM (r31, r32)φi(r32, r31, r21) exp(−αiu1 − βiu2 − γiu3) × (2)

exp(ıδiu1 + ıeiu2 + ıfiu3) ,

where Ci are the linear (or variational) parameters, αi, βi, γi, δi, ei and fi are the non-linear

parameters and ı is the imaginary unit. The functions Y`1,`2
LM (r31, r32) are the so-called

Schwartz [8] or bipolar harmonics, L is the total angular momentum, M is the eigenvalue

of the L̂z operator. In actual calculations one can use only those Schwartz harmonics for

which `1 + `2 = L + ε, where ε = 0 or 1. The first choice of ε corresponds to the natural

space parity π = (−1)L, while the second choice represents states with the unnatural space
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parity π = (−1)L+1. An additional family of polynomial-type functions φi(r32, r31, r21) can

also be used in calculations to represent some inter-particle correlations. The operator P̂21 is

the permutation of the identical particles in symmetric three-body systems, where κ = ±1,

otherwise κ = 0. In the present study κ = −1 for the triplet state of the helium atom,

κ = (−1)L for the ppµ, ddµ and ttµ symmetric systems and κ = 0 for the dtµ ion. Also,

κ = 1 for the H+
2 and D+

2 ions, and κ = 0 for the DT+ ion and both helium-muonic

atoms. Furthermore, in all present calculations it is assumed that φi(r32, r31, r21) = 1 for

i = 1, . . . , N .

Note that the variational expansion Eq.(2) can also be written in the following (short)

form

Ψ =
N∑

i=1

CiK
i
LM(r31, r32)ψi(u1, u2, u3; ~ωi) , (3)

where i = 1, 2, . . . , N and N is the total number of basis functions ψi used. Ci are

the linear (or variational) coefficients, u1, u2, u3 are the perimetric coordinates and ~ωi =

(αi, βi, γi, di, ei, fi) is the six-dimensional, i−dependent vector of the non-linear parameters

associated with the given basis function ψi. Also, in the last formula Ki
LM(r31, r32) =

Y`1(i),`2(i)
LM (r31, r32) is the corresponding angular factor. Note that the variational expansion

Eq.(2) (or Eq.(3)) can be obtained by discretization of the Fourier integral transformation

[9] for the wave function written in the perimetric coordinates. The general approach for

generating variational expansion by using discretization of the different integral transforma-

tions can be found in [10]. Note also that this variational expansion (Eq.(2)) is assumed to

be a fast convergent expansion. As we mentioned above, this means that already a very few

basis functions ψi(u1, u2, u3; ~ωi) can approximate quite accurately the bound state energy

and corresponding wave function [3]. For instance, the first 100 basis functions in Eq.(2)

used for the considered S(L = 0)−state of the ppµ ion allow one to obtain 99.99999 % of

the total energy (and even more, if the optimization of non-linear parameters is applied).

This means that the total contribution to the ppµ energy for the rest of 3500 basis wave

functions (see Table I) is less than 1 · 10−5 %. However, such a small contribution is ex-
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tremely important to obtain highly accurate results for this system (see results Table I).

This means that all basis functions with 101 ≤ N ≤ 3500 form almost linearly dependent

combination, or in other words almost zero vector. Analogous situation can be found for

all other systems and states considered in this study. In general, at large dimensions (N)

the additional basis functions do not contribute significantly to the energy, but complicate

solution of the corresponding eigenvalue problem due to increasing linear dependence. This

indicates clearly that high precision bound state calculations are essentially based on the

use of almost linearly dependent vectors [11] and almost degenerated (or ill-conditioned)

matrices [12]. In general, the absolute norms of such almost linearly dependent vectors are

very close to zero [11].

To illustrate the general situation let us consider the matrix representation of the

original Shrödinger equation. In fact, by using the variational expansion Eq.(3) for the trial

wave function Ψ one can reduce the original bound state problem to the following matrix

eigenvalue form

(Ĥ − E · Ŝ) ~C = 0 , or (Λ̂− 1
2 Û−1ĤÛ Λ̂− 1

2 − E)~C = 0 , (4)

where Ĥ is the Hamiltonian matrix Hn,n′ = 〈ψn | Ĥ | ψn′〉 and Ŝ = Û−1Λ̂Û is the positive

overlap matrix Sn,n′ = 〈ψn | ψn′〉. In general, for truly independent basis sets all eigenvalues

of Ŝ are positive. In actual bound state calculations, most of the eigenvalues of Ĥ are also

positive, but some of them can be negative. In fact, only such negative eigenvalues of Ĥ

are of interest for our present study, since they represent the case of discrete spectrum. The

main problem of high precision bound state calculations for few-body systems is related to

the fact that all matrices in Eq.(4) (i.e. the Ŝ, Ĥ and (Ĥ − E · Ŝ) matrices) are extremely

ill-conditioned. Briefly, this means that all these (symmetric) matrices contain very large

and very small matrix elements [13]. In the general case, for an arbitrary finite-dimensional

matrix Â one can determine the condition number κ(Â) [13] as the ratio of maximal and

minimal of all matrix elements (by absolute value). The matrix elements equal zero iden-

tically must be ignored during this procedure. In fact, in the case of Eq.(3) all mentioned
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Ŝ, Ĥ and (Ĥ − E · Ŝ) matrices do not have matrix elements which are equal zero identi-

cally. In general, the condition number κ(Â) is a characteristics of solvability of system of

linear equations Âx = y [12]. Note that all operations with ill-conditioned matrices are

very complicated, but their inversion, decomposition and diagonalization become extremely

complicated.

These serious troubles have a very simply explanation, since, in general, the numerical

accuracy can easily be lost even in usual arithmetic operations with ill-conditioned matrices

[12]. The solution of a linear system and eigenvalue problem with ill-conditioned matrices

produces a significant loss of numerical accuracy. This known fact can be formulated as

the following general rule [14]: if κ(Â) is 10k, the solution of a linear system (or eigenvalue

problem) computed in t−digit (decimal) arithmetic will have no more than t − k accurate

figures. In our present study the condition numbers for the Ŝ, Ĥ and (Ĥ − E · Ŝ) matrices

in Eq.(5) were ≈ 1060 − 1072. Therefore, in order to produce the result which is accurate

in 30 decimal figures, one has to use arithmetic with 84 - 100 digits. For some systems the

actual situation is even worse, but in these cases all matrices can be scaled and this can

have a beneficial effect on the overall numerical stability. However, in general, even a perfect

scaling strategy cannot remove all troubles related with ill-conditioned matrices, since the

main source of such troubles is related with the original physical problem, rather than with

the chosen computational strategy.

However, the presence of ill-conditioned matrices in Eq.(4) is only one of numerous

problems related with this eigenvalue equation. A separate problem is related with the

condensation of positive eigenvalues E to the threshold energy Etr. This problem can be

detected already for relatively small N , but at large dimensions (N ≥ 3000) this can produce

a significant loss of numerical accuracy. To illustrate the problem let us consider the muonic

molecular ion ppµ which has only one bound state with L = 0. In this case, already one

exponential basis function in Eq.(2) with optimized non-linear parameters reproduces quite

accurately the corresponding bound state energy [3]. According to the “separation theorem”
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[15], [16] (see, also [17]) the second, third and higher eigenvalues of the Hamiltonian for ppµ

ion converge to the threshold energy which represents the two-particle dissociation channel

(i.e. ppµ = pµ + p, Etr = Epµ = −0.5/(1 + mµ/mp) ≈ -0.449393964390975805 m.a.u.).

Finally, in actual calculations a large number of higher eigenvalues of Eq.(4) can be found

to be very close to the threshold energy Etr (condensation of eigenvalues). This means that

our original eigenvalue problem is essentially replaced by eigenvalue problem for degenerated

matrices. In fact, at very large dimensions (N ≥ 3000) the matrix (Ĥ −E · Ŝ) (for the ppµ)

ion is almost degenerated. The reduction of this matrix to the Λ+Λ, L+DL and other forms

[12] complicates significantly. In the general case, this is another source of numerical errors.

An effective way to avoid all troubles related with the use of ill-conditioned and almost

degenerated matrices in Eq.(4) is to perform all arithmetic operations with the extended

numerical precision [6].

The results of our present calculations can be found in Tables I - IV. The particle

masses used in our present calculations are mp = 1836.152701 me, md = 3670.483014 me,

mt = 5496.92158 me and mµ = 206.768262 me [18]. For the helium nuclei in the helium-

muonic atoms we used the following masses (in atomic units) [18], [19] M3He2+ = 5495.8852

and M4He2+ = 7294.2996. The nucleus in the ∞He atom is assumed to be infinitely heavy.

The results for the 23S(L = 0)−state in the helium atom with infinitely heavy nucleus ∞He

are presented in Table I. This state is a relatively low-lying state in the bound state spectrum

of helium atom. In fact, this state can be computed with incredible high numerical accuracy,

since the presence of Fermi hole (see, e.g. [20]) in the electron density distribution simplifies

significantly the consideration of the electron-electron correlations at short distances. Briefly,

this means that the electron-electron delta-function equals zero identically for all triplet

states in two-electron systems. This explains why the computed energies for triplet states

in any two-electron system are more accurate, in general, than corresponding results for the

singlet states. In fact, the triplet 23S(L = 0)−state in the helium atom with infinitely heavy

nucleus ∞He is an ideal test for any computational method.

Tables I and II contain highly accurate variational results for a number of muonic
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molecular ions ppµ, ddµ, dtµ and ttµ. Presently, to designate the bound states in muonic

molecular ions we shall apply the (L, ν)−classification scheme, where L and ν are the cor-

responding rotational and vibrational quantum numbers. For the ppµ ion we consider the

ground bound S(L = 0)−state (or (0,0)-state) and rotationally excited P (L = 1)−state (or

(1,0)-state). For the ttµ ion only the P (L = 1)−state (or (1,0)-state) is discussed. The best

variational energies obtained in earlier calculations for all 22 bound states in six muonic

molecular ions ppµ, pdµ, ptµ, ddµ, dtµ and ttµ can be found in [1]. Our present results (see

Tables I and II) for all considered states are more accurate than energies presented in [1].

Note that, all muonic molecular ions can easily be created and observed experimentally.

Obviously, the most interesting bound states in muonic molecular ions are the two

weakly-bound (1,1)-states in the ddµ and dtµ muonic molecular ions. It was assumed that

such ‘resonance’ states can play a central role in the muon-catalyzed nuclear (d, t)− and

(d, d)−fusion (see, e.g. [21], [22]). To predict the efficiency of muon-catalyzed fusion in

the equimolar deuterium-tritium mixture one has to know the (1,1)-energy level in the

dtµ ion with the accuracy ≈ 0.01 K (or ≈ 10−6 eV ). On the other hand, the amplitude

of attractive muon-nuclear potential in the dtµ ion is ≈ 1 keV = 1000 eV . Finally, the

maximal computational uncertainty for the energies of these weakly-bound (1,1)-states can

be estimated as ≈ 1 · 10−9. Such an accuracy can easily be produced for the helium atom or

for the Ps− ion. However, the considered (1,1)-states in the ddµ and dtµ ions are extremely

weakly-bound systems consisting of the three particle with comparable masses (mµ, md and

mt). In general, the wave functions of weakly-bound systems vanish effectively only at very

large distances. The actual computations situation for the (1,1)-states in the ddµ and dtµ

is even worse than for the DT+ ion (almost unbound systems). Our long-time experience

in three-body bound state calculations, indicates that the (1,1)-state in the dtµ ion is one

of most complicated cases for high precision calculations. The complexity of this system

is related with the overall structure of the weakly-bound state, rather than with particle

masses or charges. Note that highly accurate results for the (1,1)-state in the dtµ ion were

produced only recently [1].
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The total energies (in muon-atomic units) for the (1,1)-states in the ddµ and dtµ ions can

be found in Table II. In general, the energies from Table II for these ions are more accurate

than results obtained for these states in [1]. In fact, by using these results and relatively

simple asymptotic formulas one can easily evaluate the total energies for the weakly bound

(1,1)-states in the ddµ and dtµ muonic molecular ions as follows

E(ddµ;L = 1, ν = 1) = −0.473686733842725± 4 · 10−15 m.a.u. ,

E(dtµ;L = 1, ν = 1) = −0.4819915299739± 4 · 10−13 m.a.u. ,

where the muon-atomic units (mµ = 1, h̄ = 1 and e = 1) are used. The binding energies for

these states can now be evaluated with uncertainties less than 2.3 · 10−11 eV and 2.3 · 10−9

eV , respectively. The corresponding binding energies are

ε(ddµ;L = 1, ν = 1) = −1.974988087995± 23 · 10−12 eV ,

ε(dtµ;L = 1, ν = 1) = −0.6603386864± 23 · 10−10 eV ,

Here, the conversion factor 27.2113961(mµ/me) was used. This means that our present

results are significantly more accurate than the energies determined in [1].

Highly accurate results for the ground states in the adiabatic ions H+
2 , D

+
2 and DT+ are

presented in Table III. These ions are of increasing interest in various applications mainly

related with astrophysics, plasma physics and nuclear (d, t)− and (d, d)−fusion. The prop-

erties of these ions are discussed in our earlier studies [5]. The bound state properties for

the H+
2 and D+

2 ions determined in [5] coincide very well with the results obtained in [23]

and [24] (for the energies, see also [25]). Note that the current accuracy for the energies

presented in Table III is quite comparable to the accuracy of the best atomic calculations.

The energies of the considered adiabatic ions H+
2 and D+

2 (other similar ions HD+, HT+

and T+
2 are considered in [5]) can now be predicted with uncertainties less that 1 · 10−20 a.u.

For the DT+ ions such an minimal uncertainty is ≈ 1 · 10−16 a.u. A large number of other

bound state properties were also determined quite accurately (see [5]).
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However, our progress in computations of the nuclear-nuclear contact properties in such

systems is quite modest [5]. In general, the contact property X can be written in the form

〈X〉 = 〈δ(rij)F̂ (xi,pj)〉 , (5)

where F̂ is an arbitrary, in principle, operator which depends on the dynamical variables

(xi and pj) of the considered system. The delta-functions and cusps [26], [27] are the

two examples of quite simple contact operators. However, these expectation values of the

nuclear-nuclear delta-function (as well as the triple delta-function) are of great importance

in numerous applications. This follows e.g. from the fact that these values determine the

nuclear fusion probabilities in the corresponding system. Unfortunately, the best current

deviation obtained with our bound state wave functions for the nuclear delta-functions

varies between ≈ 1018 (for the H+
2 ion) and ≈ 1028 (for the DT+ and T+

2 ions). On the

other hand, note that the same wave functions are almost perfect for the energy and many

other properties. Obviously, the problem of contact nuclear-nuclear properties for adiabatic

systems needs a further investigation, but it was shown in [5] that the agreement between

the computed and predicted values for nuclear-nuclear delta-functions is improving when

more accurate wave functions are used.

Presently, we also consider the double electron excited 1sµ3se−states in the 3He2+µ−e−

and 4He2+µ−e− helium-muonic atoms which have never been computed earlier. Our present

goal is to evaluate the hyperfine splitting in these systems to the accuracy ±1 kHz. The

numerical computations of helium-muonic atoms contain a number of difficulties, since these

systems have the two-shell (cluster) structure. In fact, by using the hydrogen-like two-shell

model one can easily obtain some approximate results for the energies and properties in such

systems. However, an accurate description of the helium-muonic atoms requires an extensive

use of numerical methods and significant computational resources. The main problem here

is related with the electron-muonic correlations. In our present calculations of the helium-

muonic atoms we applied the same approach [1] which was successfully used for other three-

body systems. The results of numerical calculations for the second 1sµ3se−electron excited
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S(L = 0)−states of the helium-muonic atoms are presented in Table IV. This Table include

the total energies (in atomic units) and hyperfine splittings (in MHz). The formulas for the

hyperfine splitting ∆ν in the S(L = 0)−states of the helium-muonic atoms take the form

(for more details see, e.g. [28], [29] and also [30])

∆ν(3He2+µ−e−) = 10671.885079542 · 〈δ(re−µ−)〉 + 2553.9077514476 · 〈δ(re−He)〉 MHz ,

∆ν(4He2+µ−e−) = 14229.180061055 · 〈δ(re−µ−)〉 MHz

where 〈δ(re−µ−)〉 and 〈δ(re−He)〉 are the expectation values for the electron-muonic and

electron-nucleus delta functions, respectively. The expectation values of all delta-functions

in these formulas must be expressed in atomic units. Finally, by using the results from Table

IV one can evaluate the corresponding hyperfine splittings for the second electron excited

1sµ3se−states in the helium-muonic atoms as ≈ 154.3058± 3 · 10−4 MHz (3He2+µ−e−) and

≈ 165.3482± 3 · 10−4 MHz (4He2+µ−e−). Note that these states have never been discussed

in earlier studies.

The results from Table IV indicate the efficiency of our present approach for advanced

theoretical research in various few-body systems. Indeed, by considering these states for the

first time we have solved the problem completely, since now the hyperfine splittings in both

helium-muonic atoms are known with uncertainties which are less than 0.3 kHz. In fact,

such an accuracy is significantly higher than maximal experimental accuracy known for these

systems (≈ 10 kHz, see discussion in [1]). Furthermore, the improved theoretical results for

the helium-muonic atoms must also include the relativistic and quantum-electrodynamics

(radiative) corrections [31], [32]. However, such corrections are relatively small (≈ 0.02 - 0.5

MHz). To emphasize the efficiency of our present approach we want to note that it took

almost 30 years to produce a comparable numerical accuracy (≈ 1 kHz) for the ground

1sµ1se−states in the helium-muonic atoms (see, e.g. [28], [33] - [35]).

In the present study, we discuss an advanced variational approach for high-precision

bound-state calculations in three-body systems [1]. The proposed approach is found to be

very flexible and effective for solving three-body bound state problems. Its flexibility is based
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on the use of fast convergent variational expansion written in the perimetric coordinates and

a large number of separately optimized non-linear parameters. In fact, the total number of

non-linear parameters can also be varied for different systems, considered bound states,

number of basis functions N and required computational accuracy. The efficiency of our

present approach is based on the use of high-precision numerical software (MPFUN) specif-

ically developed to perform calculations with extended numerical precision. Our present

approach has been successfully tested for a large number of Coulomb three-body systems,

with different particle masses, nuclear (or particle) charges and permutation symmetries.

All our presently computed results are significantly more accurate than results known from

previous calculations for the considered systems and states.

In conclusion, we want to note that our present approach is the most appropriate method

for high precision variational calculations of the bound state spectra in the non-relativistic

three-body systems. For an arbitrary Coulomb three-body system this approach allows one

to obtain extremely accurate (i.e. essentially exact) numerical solutions. It is important to

note that numerical accuracy of such solutions can be made arbitrarily high. Briefly, one

can say that now the Coulomb three-body systems can effectively be studied numerically

[36], rather than experimentally. This means that from now on the non-relativistic Coulomb

three-body problem can be considered as a technical or computational problem, rather than

a scientific problem. For the non-Coulomb three-body systems our present approach allows

one to concentrate on the physics of the problem (e.g. on the potential reconstruction).
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TABLES

TABLE I. The total energies (E) of the ∞He atom (23S(L = 0)−state) in atomic units

(me = 1, h̄ = 1, e = 1) and for some (L, ν)−states in the ppµ, ddµ and dtµ muonic molecular

ions in muon-atomic units (mµ = 1, h̄ = 1, e = 1). N is the total number of basis functions used in

Eq.(2).

N E(∞He; 23S(L = 0)−state) N E(ppµ; (0, 0)−state)

2500 -2.1752293782367913057389644 2900 -0.494368202489347718

2750 -2.1752293782367913057389677 3100 -0.494368202489347776

3000 -2.1752293782367913057389710 3300 -0.494368202489347839

3250 -2.1752293782367913057389731 3500 -0.494368202489347872

3500 -2.1752293782367913057389742 3700 -0.494368202489347899

3750 -2.1752293782367913057389753 3800 -0.494368202489347909

-2.17522937823679130573891(a) -0.49438682024893455(a)

(a)The best variational results known from earlier calculations.
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TABLE II. The total energies (E) of some (L, ν)−states in the ppµ, ttµ, ddµ and dtµ muonic

molecular ions in muon-atomic units (mµ = 1, h̄ = 1, e = 1). N designates the number of basis

functions used in Eq.(2).

N E(ppµ; (1, 0)−state) E(ttµ; (1, 0)−state)

2750 -0.468 458 436 303 383 938 -0.533 263 449 820 381 89

3000 -0.468 458 436 303 384 288 -0.533 263 449 820 382 30

3250 -0.468 458 436 303 384 504 -0.533 263 449 820 382 69

3500 -0.468 458 436 303 384 684 -0.533 263 449 820 382 89

3750 -0.468 458 436 303 384 803 -0.533 263 449 820 383 02

-0.468 458 436 303 383 44(a) -0.533 263 449 820 376 56(a)

N E(ddµ; (1, 1)−state) E(dtµ; (1, 1)−state)

2900 -0.473 686 733 842 675 6 -0.481 991 529 972 380

3100 -0.473 686 733 842 694 8 -0.481 991 529 972 721

3300 -0.473 686 733 842 707 2 -0.481 991 529 973 090

3500 -0.473 686 733 842 716 7 -0.481 991 529 973 278

3700 -0.473 686 733 842 719 7 -0.481 991 529 973 412

3800 -0.473 686 733 842 720 3 ——–

-0.473 686 733 842 653(a) -0.481 991 529 971 713(a)

(a)The best variational results known from earlier calculations.
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TABLE III. The total energies E (in atomic units me = 1, h̄ = 1, e = 1) and binding energies

ε (in eV ) for the ground states of some adiabatic H+
2 −like ions. N designates the number of basis

functions used in Eq.(2).

N H+
2 D+

2 DT+

2000 -0.59713906312340507364 -0.59878878433068346368 -0.59913066285505615

2200 -0.59713906312340507438 -0.59878878433068346419 -0.59913066285505942

2400 -0.59713906312340507463 -0.59878878433068346439 -0.59913066285506088

2600 -0.59713906312340507474 -0.59878878433068346447 -0.59913066285506164

3000 -0.59713906312340507481 -0.59878878433068346453 -0.59913066285506218

3500 -0.59713906312340507483 -0.59878878433068346455 -0.59913066285506275

E
(a)
p -0.59713906312340507 [5] 0.5987887843306835 [5] -0.599130662855023

(a)The best variational energies (in a.u.) known from earlier calculations.

TABLE IV. The convergence of the total energies E in atomic units and hyperfine split-

tings ∆H (in MHz) for the second electron excited 1sµ3se−states for the 3He2+µ−e− (3) and

4He2+µ−e− (4) helium-muonic atoms.

Na E(3) ∆H(3) E(4) ∆H(4)

1000 -398.597957663903039272 154.3056 -402.261928652266220979 165.3481

1500 -398.597957663903043734 154.3057 -402.261928652266220992 165.3482

2000 -398.597957663903044910 154.3058 -402.261928652266220996 165.3482

2500 -398.597957663903045392 154.3058 -402.261928652266220998 165.3482

3000 -398.597957663903045630 154.3058 -402.261928652266220998 165.3482

aThe number of basis functions used in calculations.
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